Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape
نویسندگان
چکیده
Optimal zoning of protected natural areas is important for conserving ecosystems. It is an NP-hard problem which is difficult to solve by using common geographic information system (GIS) functions. Another problem is that existing optimization methods ignore potential land-use dynamics in formulating optimal patterns. This article has developed a new method for solving complicated zoning problems by using ant colony optimization (ACO) techniques. Significant modifications have been made, so that traditional ACO can be extended to the solution of area optimization problems. Two strategies, the singleyear coupling strategy and the merging-year coupling strategy, have been proposed to couple urban cellular automata with ACO for zoning protected natural areas under a changing landscape. This proposed method has been tested in the metropolitan region of Guangzhou, China, by using Geographical Simulation and Optimization System (GeoSOS) software. The experiments indicate that the modified ACO can effectively solve this optimization problem without getting stuck in local optima. This method has better performances compared to other traditional methods, such as simulated annealing (SA), iterative relaxation (IR), and density slicing (DS). The use of the best coupling strategy can improve the accumulative utility value of the zoning by 4.3%.Moreover, it is also found that the adoption of the best protection pattern could significantly promote the compactness of future urban forms in the study area.
منابع مشابه
An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks
High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...
متن کاملThe history relating to the changing nature of protected area management objectives: towards reconciliation with surrounding landscape
Natural areas have been reserved for thousands of years. However, the reasons for reservation have changed with time. Natural areas management objectives have changed from personal/individual human needs to environmental protection. Unlike old protected areas, new protected areas have multiple management objectives. The management objectives changed from protection for now to protection for the...
متن کاملAn Improved Artificial Bee Colony-Based Approach for Zoning Protected Ecological Areas
China is facing ecological and environmental challenges as its urban growth rate continues to rise, and zoning protected ecological areas is recognized as an effective response measure. Zoning inherently involves both site attributes and aggregation attributes, and the combination of mathematical models and heuristic algorithms have proven advantageous. In this article, an improved artificial b...
متن کاملDynamic Multi-Objective Navigation in Urban Transportation Network Using Ant Colony Optimization
Intelligent Transportation System (ITS) is one of the most important urban systems that its functionality affects other urban systems directly and indirectly. In developing societies, increasing the transportation system efficiency is an important concern, because variety of problems such as heavy traffic condition, rise of the accident rate and the reduced performance happen with the rise of p...
متن کاملDelimiting the urban growth boundaries with a modified ant colony optimization model
Article history: Received 8 December 2015 Received in revised form 5 November 2016 Accepted 11 November 2016 Available online xxxx Delimiting urban growth boundaries (UGBs) has been generally regarded as a regulatorymeasure for controlling chaotic urban expansion. There are increasing demands for delimiting urban growth boundaries in fast growing regions in China. However, existingmethods for d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Geographical Information Science
دوره 25 شماره
صفحات -
تاریخ انتشار 2011